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The aim of the study is to identify male and female typical energy-related behaviors that have a great
influence on energy consumption, which provides reference for building designers and policy makers.
Previous studies focused on investigating the influence of one or two specific kinds of energy-related
behaviors on building energy consumption. Besides, significant differences between females and
males regarding energy-related behaviors have been highlighted in many studies. However, an inte-
grated and in-depth analysis of typical energy-related behavior and gender difference for cooling energy
consumption is yet to be conducted. To fill this research gap, this paper investigated correlation between
cooling energy consumption and energy-related behaviors with empirical data for different genders, and
identified male and females’ typical energy-related behaviors respectively by applying data mining
approach. Data concerning energy use and energy-related behaviors were collected from Energy Man-
agement System and questionnaire respectively. Results show that there are significant differences in
cooling energy consumption between genders. For both males and females, the daily average hours of air
conditioning utilization, electric fans usage instead of air conditioner, and the ratio of occupancy in
rooms are typical behaviors influencing cooling energy consumption. The comparative study between
genders indicates that the frequency of air conditioner use is a typical behavior influencing cooling
energy consumption, especially for females. However, thermal preferences have more noticeable influ-
ence on cooling energy consumption for males than females. The study not only helps improve modeling
accuracy of occupant behavior in design simulation, but also helps prioritize efforts to guide occupant
behavior in order to reduce building energy consumption in operation stage.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

difference between the designed and actual building energy con-
sumption (Wilde, 2014; Zou et al., 2018b). Occupant behavior was

The building sector is responsible for nearly 32% of global energy
use, which contributes to 19% of total energy-related Green House
Gas (GHG) emissions (Edenhofer et al., 2014; Tam et al.,, 2019). In
consideration of energy conservation, the estimation of energy use
in buildings is therefore a critical process during the design stage
(Najjar et al., 2019). However, there is a significant gap of 2—3 times
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recognized as a primary source of this gap, since it was not well-
represented in building energy design (Hong et al., 2017). In some
simulation studies, occupant behavior was simplified as presence
duration or occupancy schedule with a limitation of covering only
one type of behavior (Jia et al., 2017). Occupants’ active energy
behaviors (e.g., opening/closing windows, lowering blinds, adjust-
ing thermostats, turning lighting on/off, and adjusting clothing,
etc.) are still not fully considered in current energy analysis tools
(Elham et al., 2017; Tam, W.Y.V. et al., 2018). Due to the diversity of
occupant behaviors, instead of developing complicated models of
all behaviors, it is necessary to derive several kinds of typical
occupant behaviors that represent the assemblage of occupants in a
simplified way and thus, they could be regarded as reference for
building designers and energy policy makers (Feng et al., 2016). The
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forecast of building energy consumption would be improved if the
typical occupant behaviors were integrated into energy simulation
programs. Therefore, it is critical to extract typical occupant be-
haviors and also necessary to identify effects of different types of
energy-related behaviors on building energy consumption.

Many studies have investigated the impact of occupant behavior
on building energy consumption so as to reduce the performance
gap between the predicted and actual energy consumption in
buildings (Tam, V. et al., 2018). Simulation-based studies have
shown that office workers who carried out energy saving behaviors
(e.g., dimming lights, turning off HVAC systems when not needed,
and turning on plug loads & appliances only when needed)
consumed up to 50% of energy less than those who do not (D'Oca
et al,, 2018). Al-Mumin et al. (2003) surveyed occupancy patterns
and operation schedules of electrical appliances in 30 residences
for thermal simulation. The surveyed occupants left all lights on
when rooms were unoccupied, with the AC thermostat set at 22 °C.
This pattern of occupant behavior increased the annual electricity
consumption by 21% compared with the default data. The annual
electricity consumption would be reduced by 39% if occupants
turned off lights in empty rooms with air conditioning thermostat
set at 24 °C instead. Occupant behaviors, such as temperature set-
points and total hours of heating system utilization, have a
notable impact on building energy performance (Rinaldi et al.,
2018). Wang et al. (2015) developed a residential heating energy
consumption model and indicated that temperature set-points
significantly influenced heating energy use. Ahn and Park (2016)
found that occupants' active control of a heating/cooling system
(i.e., turn on/off) was strongly related with building energy con-
sumption. To date, the studies examined the occupant behavior in
buildings but with particular focus on only one or two specific types
of behaviors (Elham et al., 2017; Zhang, Y. et al., 2018).

In addition, occupants interact with buildings to satisfy their
environmental comfort, particularly their indoor thermal comfort
needs or preferences. The differences in thermal preferences be-
tween male and female have been demonstrated by some re-
searchers (Awan and Abbasi., 2013; Indraganti et al., 2015; Lan
et al.,, 2007). For instance, Lan et al. (2007) found that women are
more sensitive than men to the low operative temperature of air-
conditioner. In other words, men prefer a lower thermal comfort
temperature than women. Similar results are presented by
Katafygiotou and Serghides (2014). Parsons (2002) concluded that,
for the same metabolic activity and clothing insulation, males and
females may behave differently to meet their thermal comfort. It
seems environmental comfort between different genders strongly
affects the way they consume energy in buildings. Nevertheless,
few studies are conducted to research gender differences regarding
energy-related behaviors currently, and further analysis is much
more needed.

From the above literature review, it is concluded that re-
searchers have confirmed the effects of occupant behavior on
building energy consumption by focusing on specific kinds of
energy-related behaviors. Significant differences between females
and males regarding energy-related behaviors have been under-
lined in many studies. However, an integrated and in-depth anal-
ysis of typical energy-related behavior and gender difference in
building energy consumption has been not conducted yet. Hence,
the aim of this research is to extract male and female typical
energy-related behaviors influencing building energy consump-
tion. Specifically, two sub-objectives are covered as follows:

(1) To identify the effects of occupant behavior;

(2) To rank the effects of different types of energy-related be-
haviors for males and females.

As cooling energy accounts for more than 50% of the total
building energy consumption in hot summer and warm winter
zone (HE et al.,, 2013; Zhang, G. et al., 2018), this study investigated
correlation between energy-related behaviors and cooling energy
consumption in rooms. Then male and females’ typical energy-
related behaviors influencing cooling energy consumption were
identified by applying data mining approach. The study not only
helps improve modeling accuracy of occupant behavior in design
simulation, but also prioritizes efforts at improvement of occupant
energy-related behavior in order to reduce building energy
consumption.

2. Methodology
2.1. Research method and process

The purpose of this study is to extract typical energy-related
behaviors for men and women and compare their effects on cool-
ing energy consumption. Note that typical energy-related behavior
in this paper refers to the activities having great influence on
building energy consumption. There are 130 sampled identical
rooms (76 male and 54 female rooms). Fig. 1 presents the whole
research process. Each step in this study is briefly explained as
follows:

(1) A database was developed based on empirical data in terms
of energy consumption and relevant influencing factors, such
as climate, building information, and occupant behavior.
Specially, the daily energy consumption of each room was
provided by Energy Management System (EMS). A ques-
tionnaire survey was conducted to collect sample data
regarding occupants' cooling energy-related behaviors for
both male and female.

(2) Data transformation and normalization were conducted.
Firstly, the cooling energy consumption of each room was
extracted from the total energy consumption. Then, data
normalization was conducted to deal with the in-
consistencies in measured dataset.

(3) The individual effects of occupant behavior were identified
among various influencing factors of cooling energy con-
sumption. Through clustering analysis, variations in cooling
energy consumption were analyzed, and the effects of
occupant behavior on cooling energy consumption were
then identified by controlling other influencing factors.

(4) After identifying the effects of occupant behavior, features of
group energy behavior based on individual behavior were
extracted by grey relational analysis. Then, the effects of
different types of group energy-related behaviors on cooling
energy consumption were further researched and ranked by
grey relational analysis.

(5) Finally, the typical energy-related behaviors for males and
females were extracted based on their ranks respectively.

2.2. Data collection

2.2.1. Energy consumption data

In order to identify typical energy-related behaviors influencing
cooling energy consumption, field surveys were carried out from
Sep.1, 2017 to Sep. 1, 2018 in two identical students’ dormitory
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Fig. 2. Daily outdoor temperature of the investigation period (Sep1. 2017—Sep1. 2018) in Zhuhai.
buildings (i.e., hereinafter Building A and Building B), located in Building A is for male students, while Building B is for female
Zhuhai, China. Zhuhai is a typical cooling-oriented city in a hot students. Fig. 3 shows the layout of building floor and room. A total

summer and warm winter climate region, where cooling energy of 130 identical rooms were surveyed in these two buildings,
consumption accounts for the largest proportion. The daily outdoor including 76 male rooms and 54 female rooms, and each room
temperature in Zhuhai is shown in Fig. 2. accommodates six students. All rooms are equipped with the same
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Fig. 3. Layout of the standard floor and dorm rooms.

cooling-related appliances, including an air conditioner and an
electrical fan. The daily electricity usage data of each room in the
investigation period was provided by Energy Management System.
Notably, the daily electricity usage during the holidays, including
winter holiday (February) and summer holiday (July and August), is
zero, so the energy use during these days is excluded in this study.

2.2.2. Energy-related behavior theories and measurement

The data reflecting occupants’ energy-related behaviors were
collected mainly from questionnaires. According to the report of
International Energy Agency (IEA), energy-related occupant
behavior is defined as “observable actions or reactions of a person
to adapt to ambient environmental conditions such as temperature,
indoor air quality or sunlight” (Zou et al., 2018a). As explained by
Nicol and Humphery's (2002) principle-“if change occurs such as to
produce discomfort, people react in ways which tend to restore
their comfort.” Behavior is induced by the effect of certain stimuli,
also called drivers of behavior (Tam, V. et al., 2018). A predictive
curve of operating behaviors can be obtained presumably through
understanding the correlation between drivers and behavior.
Behavioral theories and models stem from the principle of social-
psychology, for example, Theory of Complex Adaptive System
(CAS), Theory of Planned Behavior (TPB), and Behavioral Cognitive
Theory, considering the changeable human cognition process by
connecting human and environment. From the perspective of CAS,
Ding et al. (2019) integrated the observed behaviors and their
influencing triggers (i.e. environment, event and habit), and pro-
posed an ABM-based model to explore the relationship between
occupant behavior and building energy consumption. Results show
that occupancy is the most important factor for dormitory energy
consumption, and reducing the time of air conditioner use have
great potential for energy saving. Based on the TPB, Tetlow et al.
(2015) developed an extending model of occupant behavior and
found that occupants were interacting with small power “auto-
matically”, with habit accounting for 11% of the variation in work-
station energy consumption. Besides, Hong et al. (2015) used
behavioral cognitive theory to develop the DNA's framework,
which suggests four components governing occupants' energy
behavior: drivers, needs, actions and systems. In order to model air-
conditioning behavior, Wang (2014) divided factors influencing
occupants' operation of air-conditioning into environment trig-
gered and event triggered. For example, whether occupants’
switching on/off air conditioner is correlated with the indoor
temperature or the daily event. The behavior “closing the curtains
when feeling hot” is considered to be environment triggered, while

the behavior “turning on air conditioner as long as entering rooms”
belongs to event triggered (Feng et al., 2016; Wang, 2014). Based on
behavioral theories, the questionnaire in this research was
designed by referencing the occupant behavior modeling frame-
work proposed by Wang (2014), who had proposed a new approach
for quantitative description from an action-based view, and factors
influencing occupants' cooling energy behavior are summarized
into environment triggered, event triggered and habit triggered,
shown in Table 1.

Based on the above behavioral theories, which are used to find
the influencing factors for occupants to operate cooling-related
systems and appliance, a questionnarie was initially designed,
with focus on understanding energy-related behaviors rather than
their change. Before the formal survey, pilot interviews were car-
ried out to further check whether the energy-related behaviors
listed in it are those mostly occur in actual daily life to influence
cooling energy consumption. Then, a final questionnaire was
formed, as shown in Appendix A. The questionnaire survey was
conducted to obtain sample data regarding occupants’ cooling en-
ergy behaviors.

The questionnaire comprised three parts, viz., (1) Partl: Re-
spondents' information. This section included background or socio-
demographics, serving to categorize the respondents by their
gender, room NO., and floors. (2) Part2: Cooling behavior perfor-
mance. This section investigated participants’ cooling-related ac-
tivities, with 13 factors affecting cooling energy consumption coded
as Bi(i=1, 2, ..., 13) in Table 1. A five-point summated scale was
used in the first eight energy-related behaviors to investigate their

” o« ” o«

behavioral performance levels (“always”, “often”, “occasionally”,
“rarely”, “never”). (3) Part 3: Space was reserved for respondents to
supplement any comments if necessary.

The reliability and validity of the survey data were tested
(Cronbach «=0.721>0.7, KMO =0.728 > 0.7), with all 13 items
finally retained. A total of 450 questionnaires were distributed face
to face. There are 410 valid questionnaires collected with at least
two valid returns from each room. Among them, 230 question-

naires were from males, while 180 from females.

2.3. Data extraction and normalization

2.3.1. Extract cooling energy consumption

Since the end-use loads provided by EMS are the total energy
consumption of each room, the cooling energy consumption needs
to be extracted from the existing dataset. According to the average
outdoor temperature, shown in Fig. 4, it can be categorized into hot
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Table 1
Cooling-related behaviors.

Code Items Main influencing triggers
B1 Closing the curtains when feeling hot Environment
B2 Turning on air conditioner as long as entering rooms Event, habit
B3 Closing doors and windows before turning on air conditioner Habit
B4 Opening doors and windows for ventilation instead of turning on air-conditioner Habit
B5 Using fans instead of turning on air conditioner Environment, habit
B6 Adjusting clothing to adapt to room temperature Environment
B7 Switching off the air conditioner regularly when sleeping Event, habit
B8 Turning off air conditioner when leaving room Event, habit
B9 The daily average frequency of utilization of air conditioner in summer Environment
B10 Ratio of occupancy in room Event, habit
B11 Temperature set points of air conditioning Environment
B12 Thermal preferences Habit
B13 The daily average hours of air conditioner utilization in summer Environment
Daily average outdoor temperature
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Fig. 4. Daily average outdoor temperature and daily average energy use.

season (May to September), transition season (April and October)
and warm season (November to March). Statistic results suggest
that energy consumption shows a marked seasonal variation. From
Fig. 4, more energy was consumed during the hot season than the

warm season. For the building A (male), the daily average energy
usage ranged from 20 to 25 KWh during hot season, but 3 to 5 KWh
in the warm season. However, females’ daily average energy loads
during the hot season centered around 10 to 17 KWh, with
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Fig. 5. Monthly average energy consumption of each building and monthly average outdoor temperature.
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Fig. 6. Monthly electricity usage of each room and monthly average outdoor temperature (left: males; right: females).

3.17 KWh at minimum and 19.40 KWh at maximum, while varied
between 2 and 4 KWh in the warm season. It could be deduced that
the male consumed almost 1.2—1.5 times more energy than the
female. Generally, the higher outdoor temperature was, the more
energy was consumed. No matter males or females, the daily
average energy during hot season was up to five times more than
that in warmer season.

The similar situation can be seen from Fig. 5. The monthly
average energy consumption of each building in hot season is about
five times more than that in warm season. Specially, the monthly
average energy consumption of buildings is similar with each other
during the warm season, and a similar pattern in each room is
found, shown in Fig. 6. It is found that the change of end-use loads
indoors did not fluctuate wildly from month to month during the
warm season. This might be due to the fact that in this season, the
energy-related activities are mainly determined by the use of non-
cooling electrical appliances like lighting, washing machine, and
plugs, and occupants tend to keep their daily energy-use habits.
Therefore, it is assumed that occupants keep their habits on non-
cooling electrical appliances all year round in this study.

Unlike the warm season, with the increase of outdoor temper-
ature, the energy consumption increases dramatically in other
seasons. Particularly, the peak of energy consumption occurred in
the hot season. Hence, compared with the warm season, this
increment of energy use in the hot and transition season is defined
as cooling energy consumption. The total energy consumption in
one year could be divided into cooling and non-cooling energy
consumption according to weather conditions (i.e., outdoor air
temperature).

For room j, the non-cooling energy consumption per month
(Ang) in formula (1) is considered to be constant, represented by
the average of monthly total energy consumption Ty during the
warm season:

n
Ach:%Zle (i;,=1,3,11,12;j=1,2,3,..., m) (1)
i1=1

where Tj; is the total energy consumption of the room j in each
month during the warm season, and N1 indicates the total of
months during the warm season. Specifically, N1 equals to 4 in this
study.

Then, the annual total cooling energy consumption of room j

(Tgj) is extracted from the annual total energy consumption, seen in
formula (2):

T¢j = Ty-N*Angj (2)

Where Ty is the annual total energy consumption of room j. N in-
dicates the number of months when non-cooling energy is
consumed in a year, viz.,, N=9.

2.3.2. Data normalization

Before data analysis, it should be noted that dataset with
different measured scales may lead to inconsistency. For example,
the electricity energy loads have a larger range than that of the
energy-related behavior values. Min-max normalization was per-
formed to deal with the inconsistencies in measured dataset and to
scale the values so that they fall within a predetermined range
(Han, 2005). The main advantage of the min-max normalization
lies in its ability to reserve the relationships of the original data,
since it carries out a linear normalization. Assume that Xp,x and
Xmin are the original maximum and minimum values of a numerical
attribute. By min-max normalization, a value of this attribute (x)
can be transformed to X' in the new specified range [X_. . Xpnax],
calculated by formula (3):

, X — Xmi / ,
= (Xmax - Xmin) (3)

X =
Xmax—Xmin

In this study, the new range is defined as [1, 5]. The annual
cooling energy uses need to be transformed to [1, 5]. For energy-
related behavior attributes such as B1—B8, their measurement i.e.
[always, often, occasionally, rarely, never], can be transformed to [1,
2, 3, 4, 5] directly.

2.4. Cluster analysis

Cluster analysis is an important method for merging data ob-
jects into different clusters. Objects in the same cluster have a high
similarity, while objects in different clusters have a low similarity
(Han, 2005). Fig. 7 shows a clustering schema based on hypothet-
ical room attributes. It contains various end-use loads, such as
lighting, cooling, and heating.

This figure consists of m attributes and n instances. Each attri-
bute represents a variable and each instance denotes a room. All the
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Fig. 7. Clustering schema.

instances are grouped into w clusters. Accordingly, these w clusters
are homogenous internally and heterogeneous among different
clusters (Han, 2005). Such internal cohesion and external separa-
tion are based upon the various end-use loads, which can be
mapped onto corresponding consumption patterns. If the influence
of other objective factors on energy use is excluded, the variations
in energy use among consumption patterns can be assumed to be
caused by occupant behavior.

The dissimilarity between data objects is calculated using the
distance between them in the cluster analysis. In this study, the
most popular distance measurement, Euclidean distance, was used
(Chen et al., 1996):

dek, 1) = /(a1 — %12 + K = X)2 + o+ K —X)2 (4)

where k=(Xk1, Xk2, ..., Xkn) and l=(xj3,Xp2, ..., X|p) are rooms, in
which, Xg1, Xk2, ..., Xkn are n parameters of k and xj1,Xj2, ..., Xip are n
parameters of 1.

Common clustering algorithms include K-means, K-medoid, and
CLARANS. In this study, K-means is used due to its efficiency and
wide applicability. Open-source data mining software Matlab7.0
was used to perform cluster analysis based on energy consumption
data. According to the end-use loads, the energy consumption can
be divided into three groups based on different energy use levels.

The K-means algorithm is one of the partition methods to solve
a clustering problem. This algorithm consists of five steps (Chen
et al,, 1996; Yu et al., 2011):

(1) Randomly select k instances from the dataset as the initial
cluster centers;

(2) Calculate the distance between each remaining instance and
each initial chosen center;

(3) Assign each remaining instance to the cluster with the
closest center;

(4) Recalculate the mean values, i.e., the cluster centers, of new
clusters;

(5) Repeat steps 2 to 4 until the algorithm converges in order for
stable cluster centers.

2.5. Grey relational analysis

On the basis of geometrical mathematics, grey relational anal-
ysis (GRA) has been proposed to search for grey relational grades
and a grey relational order (i.e., the rank of grey relational grades).
They can be utilized to describe primary trend relationships among
relevant factors, and to identify the main factors that significantly
influence predefined target factors (Deng, 1989). For example, if the

cooling energy use is defined as the target factor, GRA can find grey
relational grades for its various energy-related behaviors, such as
temperature set points, the total hours of air-conditioning utiliza-
tion, opening doors or windows, etc. These grey relational grades
represent quantified effects of different energy-related behavior on
cooling energy consumption. The larger the grey relational grade is,
the more significant effects the factor exerts. Compared with other
traditional statistical methods, the main advantages of GRA lie in its
simplicity and ability to deal with small data sets, without strict
compliance to certain statistical principles.

In this research, yop is defined as the objective sequence
(measured data of target factor, i.e., cooling energy consumption),
and y; as the compared sequences (measured data of relevant fac-
tors, i.e., various types of energy-related behaviors):

Yo = (Yo(1), yo(2), ..., yo(n)) (5)

yi = (¥i(1), yi(2), ..., yi(n)), i=1,2, ..., m (6)

The procedure of GRA is described as follows:

Step 1. Normalize raw data (Min-max normalization is used in
this study). yo and y; are used to denote obtained normalized
sequences;

Step 2. Calculate grey relational coefficients ¢;(k), which is
defined based on yp and y; as:

min min max max
Vo (k) — yi(K)[ +a IVo(k) — yi(k)|
k i k
ei(k) =

max max
Vo (K) — yi(K)[ +a P Vo (k) — i (k)|

(7)
where 0 < a<1, normally a = 0.5.

Step 3. Calculate grey relational grade (rj) in the following
formula (8):

—1 n
j =5 kzz;gi(k) (8)

Step 4. Rank the obtained grey relational grades, and thus, the
grey relational order can be identified.

As is mentioned previously, grey relational grades were
employed to extract group behavior features based on individual
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behaviors. Then it was applied to evaluate the effects of energy-
related behaviors on cooling energy consumption at a group level
to find out the typical ones. Notably, grey relational grades are
numerical measures of factor influences on objective values, and
the numeric values are between 0 and 1. Generally, r > 0.9 indicates
a marked influence, r > 0.8 indicates a relatively marked influence,
and r > 0.7 indicates a noticeable influence (Fu et al., 2001).

3. Results and discussion
3.1. Effects of occupant behavior

Since energy consumption is influenced by various factors,
including climate, building envelope, building systems and equip-
ment, as well as occupants and their behaviors (Huebner et al.,
2016), it is necessary to identify the separate effects of occupant
behavior. Unlike Yu et al. (2011) who clustered the grey relational
coefficients between energy use and objective factors to obtain the
similar objective factors, this paper selected typical cases that could
adequately remove the objective influencing factors, and precisely
identify the effects of occupant behavior on energy consumption.
For samples of identical dorm rooms, apart from occupants’
behavior and the building floor, other influencing factors of cooling
energy consumption were controlled.

The rest steps are to identify the effects of occupant behavior on
cooling energy consumption among factors of gender, floor, and
behavior. Firstly, the effects of occupants’ gender on the cooling
energy consumption are identified by analysis of variance. Sec-
ondly, through cluster analysis, the cooling energy consumption is
clustered into three consumption patterns based on different levels
of energy usage. The variances in energy use among different
consumption patterns are then analyzed with different floors by
analysis of variance. Finally, if the floor has a negligible influence on
cooling energy consumption, energy consumption gaps among
different consumption patterns could be attributed to occupant
behaviors.

3.1.1. Effects of genders
Analysis of variance was used to compare the difference of
cooling energy consumption between genders. Provided that the

significance threshold was defined as 0.05, the result indicated that
there were significant differences in cooling energy consumption
between different genders (P < 0.05), which was consistent with
the findings of Zelezny et al. (2000). The energy-related behaviors
of males and females were then researched respectively.

3.1.2. Effects of floors on different energy consumption patterns

Cluster analysis was applied to analyze cooling energy con-
sumption for each gender group. Cooling energy consumption was
grouped into three energy use patterns based on K-MEANS algo-
rithm, viz., the austerity pattern, the normal pattern, and the over-
use pattern as shown in Fig. 8 and Fig. 9, respectively. It showed that
there are significant differences within the same gender group.
Those in the over-use pattern seem to use almost 2—3 times cooling
energy than those in the austerity pattern. For males, the annual
total cooling energy consumption of the austerity ranged from
670.71 KWh to 1280.57 KWh, but 1690.31 KWh to 2098.01 KWh for
the over-use. Alternatively, in the female group, the average of
annual total cooling energy consumption is 784.41 KWh for the
austerity, while 1675.78 KWh for the over-use.

For these rooms, apart from different floors and behaviors, other
objective influencing factors of cooling energy consumption are
controlled including climates, building envelope, installations,
gender, etc., but it still shows great variations of cooling energy
consumption in different dorm rooms. To research whether the
floor variable influences or not, the effect of different floors on
cooling energy consumption was further clustered as demonstrated
in Fig. 10 and Fig. 11. From the results, cooling energy consumption
on different floors is relatively even-distributed on the same level
in both male and female rooms. Similarly, analysis of variance was
then used to analyze the effect of different floors on cooling energy
consumption under the same gender group, which indicate that the
floor variable has no significant influence on cooling energy con-
sumption (Ppae = 0.235 > 0.05, Pfemale = 0.098 > 0.05). Hence, the
cooling energy performance gap caused by different floors is
ignored in the process of identifying the effects of occupant
behavior. It is therefore concluded that the discrepancies (almost
2—3 times) in cooling energy consumption are the result of occu-
pant behavior. This finding is in line with the result of Zhou
et al.(2018) that occupant behavior led to the greatest differences
(up to 3 times) in air conditioning cooling consumption by
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Table 2
Occupant behavior performance in one dorm room.

Room NO. Room Code Respondents NO. B1 B2 B3 B13 Cooling energy usage
7604 1 1 3 3 1 2.67 1316.76
2 4 1 4 2.67
3 4 3 4 233
4 2 3 3 2.67
5 3 2 2 3.00
simulation. Table 4

3.2. Feature extraction of group energy behavior

Due to behavioral diversity, different occupants in the same
room may behave differently. The behavior data collected through
the questionnaire are based on individuals. However, the cooling
energy consumption reflects the group's (viz., a room considered as
a group) energy use. The difficulty lies in how to use individual
behavior data to establish the relationship between group behavior
and cooling energy consumption in a room. In other words, the
relationships between individual behavior and group behavior
need to be examined, and the characteristics of group behavior
based on individuals shoud be analyzed.

In addtion, concerning different behavioral indicators, the effect
of individual behavior on group behavior is different. This paper
proposed a method for extracting features of group energy
behavior based on individual behaviors. The group energy-related
behavior feature index was defined by extracting five statistic in-
dicators including the max, min, mean, mode, and median of each
group. Then, the correlation coefficient between group behavior
feature index and cooling energy consumption was calculated by
grey relational analysis. The largest correlation coefficient was
finally chosen to be the group behavior feature index. The higher
the correlation coefficent is, the better it represents the group
behavior.

Take NO. 7604 room as a group example. This group holds five
individuals with each individual behaving quite differently from
each other as shown in Table 2. As a result, the cooling energy
consumption in this room is emerged from all individuals’ behav-
iors on a group level. The following three steps are demonstrated to
extract the group behavior feature.

Firstly, the feature index of each behavior indicator was calcu-
lated based on their individual behavior performance. For example,
the group feature indexes of B13 are listed as max=3.00,
min = 2.33, mean = 2.67, mode = 2.67, median = 2.33, respectively.

Table 3
The grey relational grades for the relationship between group behavior features
based on individual behaviors and cooling energy (males).

Variables Grey relational grades
Max Min Mean Mode Median

B1 0.66 0.64 0.68* 0.65 0.67
B2 0.62 0.63 0.65* 0.63 0.63
B3 0.60 0.63 0.67* 0.61 0.65
B4 0.65 0.66 0.73* 0.69 0.72
B5 0.63 0.55 0.64* 0.58 0.62
B6 0.67 0.64 0.71* 0.67 0.69
B7 0.68 0.61 0.70* 0.65 0.69
B8 0.66 0.61 0.68* 0.62 0.65
B9 0.62 0.61 0.67 0.61 0.65
B10 0.64* 0.57 0.63 0.60 0.62
B11 0.66 0.64 0.68* 0.65 0.67
B12 0.67 0.64 0.69* 0.66 0.69
B13 0.63 0.67 0.67 0.66 0.68*

The grey relational grades for the relationship between group behavior features
based on individual behaviors and cooling energy (females).

Variables Grey relational grades
Max Min Mean Mode Median

B1 0.70* 0.57 0.65 0.59 0.64
B2 0.71 0.63 0.71* 0.66 0.71
B3 0.71* 0.57 0.68 0.62 0.68
B4 0.73 0.68 0.77* 0.73 0.76
B5 0.69* 0.51 0.61 0.56 0.58
B6 0.73* 0.55 0.68 0.63 0.68
B7 0.63 0.57 0.67* 0.59 0.65
B8 0.70* 0.56 0.68 0.63 0.67
B9 0.69* 0.61 0.69 0.65 0.69
B10 0.66* 0.53 0.62 0.57 0.60
B11 0.70* 0.57 0.65 0.59 0.64
B12 0.68* 0.53 0.62 0.55 0.61
B13 0.66 0.70 0.75* 0.69 0.72

Secondly, the correlation coefficient (i.e., grey retional grades)
between the group feature index and cooling energy consumption
is calculated by grey relational analysis. Table 3 and Table 4 showed
the correlation coefficients calculated.

Finaly, the final group feature was chosen from the five types of
feature indexes based on the largest correlation coefficient, as seen
in Tables 3 and 4. For Variable B1, its mean value (0.68) shows the
largest correlation (*coded) between the group behavior and
cooling energy consumption, so the mean is chosen as the final
group behavior feature.

After extracting features of group energy-related behaviors from
individual behaviors, grey relational analysis was further applied to
examine and rank the effects of group energy-related behaviors on
cooling energy consumption within each gender group.

3.3. Extraction of typical energy-related behaviors

3.3.1. Ranking the effects of energy-related behaviors for males and
females

The ultimate goal of this study is to find out the typical energy-
related behaviors influencing cooling energy consumption. After
identifying the effects of occupant behavior on cooling energy
consumption, grey relational analysis was utilized to further
investigate and rank the effects of different types of specific energy-
related behaviors on cooling energy consumption. Therefore, the
annual room cooling energy consumption was selected as the
objective sequence in GRA, and different types of group energy-
related behaviors shown in Table 1 were regarded as reference
sequences. According to the procedure of GRA described in Section
2, the correlation coefficient rj reflects correlations between group
energy-related behavior and cooling energy consumption, which is
based on the whole sample. It describes the effects of different
types of energy-related behaviors on cooling energy consumption.
The results of GRA are showed in Fig. 12 and Fig. 13 for different
gender groups, respectively.

As can be seen from Fig. 12, B13 (the daily average hours of air
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conditioning utilization) influenced cooling energy consumption
more significantly than the other energy-related behaviors for
males. It's suggested that the daily average hours of air conditioning
utilization is the most significant behavior influencing cooling en-
ergy consumption. At the same time, B12 (thermal preferences),
B10 (the ratio of occupancy in room), B11 (the temperature set
points of air conditioning), and B5 (using fans instead of turning on
air conditioner) have noticeable impacts on cooling energy con-
sumption for males, since the grey relational grades of these four
behaviors all exceed 0.7. As the most typical behavior, the daily
average hours of air conditioning utilization has significant differ-
ences under different consumption patterns. As presented in Fig. 14,
for the over-use pattern, the daily average hours of air conditioning
utilization mainly take the values of 10—15 h (50.00%) and 15-20h
(33.30%), but its values are evenly distributed for the austerity, with
29.20% for 5—10h, 36.20% for 10—15h, 26.90% for 15—20h,
respectively.

Compared with males, female group behavior seems to have
more impact on cooling energy consumption. As shown in Fig. 13,
there are a total of eight typical behavior types whose grey rela-
tional grades are more than 0.7, the rankings of which are as
follows:

r1(B13) = 0.81 > r2(B2) = 0.77 > r3(B4) = 0.73 > r4(B9) =
0.72 > r5(B5) = 0.72 > r6(B10) = 0.71 > r7(B10) = 0.71 >
r7(B11)=0.71

It shows that B13 also has the most marked influence on cooling
energy consumption for females. As can be seen from Fig. 15, the
daily average hours of air conditioning utilization differs signifi-
cantly under different consumption patterns. For the over-use
pattern, most of them spend 15—20h with air conditioning
opened, at the proportion of 77.80%. In contrast, the daily average
hours of air conditioner utilization ranged from 10 to 15 h each day
for the austerity (61.50%).

Clearly, the daily average hours of air conditioner utilization
among males' behaviors ranks top, same as that in females’ be-
haviors. The significant effects of this behavior on cooling energy
consumption are also stated in Rinaldi et al. (2018) and Li et al.
(2007) that the cooling energy consumption of different apart-
ments varied widely due to the variance in duration with air-
conditioning. Furthermore, B2 (turning on air conditionings as
long as entering the room) noticeably influences cooling energy
consumption, which is similar with the findings in Feng et al.
(2016). Moreover, B4 (opening doors and windows for ventilation
instead of turning on air-conditioning), B9 (the daily average fre-
quency of utilization of air conditioner), B5 (using fans instead of
turning on air conditioner), B10 (the ratio of occupancy in room),
B11 (temperature set points of air conditioning), and B6 (adjust
clothing to adapt to room temperature) have noticeable influences
on cooling energy consumption. It is concluded that these energy-
related behaviors of female occupants should be paid more
attention.

3.3.2. Comparative analysis between genders

Table 5 presents the rankings regarding the effects of different
energy-related behaviors on cooling energy consumption under
different genders. Results show that there are certain similarities
and differences in the typical specific energy-related behaviors
influencing cooling energy consumption between males and
females.

On the one hand, it can be found from Table 5 that among the
top six energy-related behaviors, three of them are similar, such as
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B13 (the daily average hours of air conditioner utilization), B5
(using fans instead of turning on air conditioner), and B10 (the ratio
of occupancy in room). Particularly, the rank for B13 and B5 are the
same for males and females. In other words, regardless of gender,
B13, B5, and B10 are the typical energy-related behaviors influ-
encing cooling energy consumption, thus deserving more attention
in building energy design and improvement of occupant behavior
in operation stage. For B10, the current result is different from the
experiments of Ahn and Park (2016) which showed that occupants’
presence is not strongly correlated with energy consumption. Yet,
behaviors such as B1 (closing the curtain when feeling hot), B3
(closing the doors and windows before turning on air conditioner),
and B8 (turning off air conditioner when leaving room) are found
with negligible influence on cooling energy consumption in this
research. Further statistical analysis shows that these behaviors
have no significant differences among occupants. For B6

(adjustment clothing to adapt to room temperature), results show
that it is not a significant influencing factor of cooling energy
consumption, which is in line with findings in Schweiker et al.
(2012).

On the other hand, there are some differences in the grey rela-
tional order for B2 (turning on air conditioner as long as entering
rooms), B4 (opening doors and windows for ventilation instead of
turning on air conditioner), B9 (the daily average frequency of
utilization of air conditioner), B12 (thermal preferences), and B11
(temperature set points of air conditioning). The comparative study
of different gender indicated that B2, B4, and B9 were typical be-
haviors influencing cooling energy consumption for females, while
these behaviors are untypical for males. As for females, the better
their behavior performance is, the less energy they consume. In
contrast, B12 and B11 have more significant effects on cooling en-
ergy consumption for males than females. Details are discussed as
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Table 5
Orders of behaviors influencing cooling energy consumption under different genders.

Code Items Ranking results of GRA (male) Ranking results of GRA (female)
B1 Closing the curtains when feeling hot 11 11
B2 Turning on air conditioner as long as entering rooms 6 2
B3 Closing doors and windows before turning on air conditioner 12 12
B4 Opening doors and windows for ventilation instead of turning on air-conditioner 7 3
B5 Using fans instead of turning on air conditioner 5 5
B6 Adjusting clothing to adapt to room temperature 9 8
B7 Switching off the air conditioner regularly when sleeping 8 10
B8 Turning off air conditioner when leaving room 10 13
B9 The daily average frequency of utilization of air conditioner in summer 13 4
B10 Ratio of occupancy in room 3 6
B11 Temperature set points of air conditioning 4 7
B12 Thermal preferences 2 9
B13 The daily average hours of air conditioner utilization in summer 1 1
following. 3.4. Implications of the study

Firstly, for B2 and B4, similar performance was found in males’
behaviors. Taking B4 as an example, most male occupants prefer
opening windows and doors in summer. However, the females
varied in B4 due to their different attitudes and behaviors for pri-
vacy protection. The variation of females’ behavior (B4) leads to
their discrepancy of cooling energy use. Partially different from the
findings in Fabi et al. (2013) that the opening window behavior has
great impact on energy consumption, the current results indicate
that the window opening behavior influences noticeably on cooling
energy consumption for females rather than males.

Second, for B9, it shows a quite different order between genders.
It ranks the last for males, indicating negligible influence on male
occupants' cooling energy consumption. It was found that the fre-
quency of utilization of air conditionings in males' room is usually
higher than that in females’ room. Besides, female occupants vary
widely in this behavior, thereby causing dramatic differences in
cooling energy consumption.

Another remarkable difference is found in the rank of B12
(thermal preferences). It ranks the second for males while the ninth
for females, which suggest that it has a more noticeable influence
on males’ cooling energy consumption. Considering the rank dif-
ference for B11 between genders, it can be deduced that thermal
comfort influences behaviors. Data showed that male and female
occupants varied in thermal preferences. There are great variations
in thermal preferences for males, with the comfortable tempera-
ture indoors averagely distributed between 20°C and 28 °C but
only between 24 °C and 26 °C for females. Accordingly, males tend
to set the temperature of air conditioning ranging from 17 °C to
28 °C in summer, while females set it from 24 °C to 26 °C. This is
because males have more significant individual differences in
thermal preferences than females. With respect to temperature set
points, both data-driven and simulation-based analysis have indi-
cated that such behavior has a significant influence on cooling
energy consumption (Lin et al., 2018; Mauri et al., 2019). In contrast,
the results in this study show that the effect of the chosen tem-
perature set points on cooling energy consumption varied in
different gender. For males, it has strong correlation with energy
consumption, while it is not so important for females. Occupant
behavior to meet thermal comfort normally results in high energy
consumption. Therefore, there should be a trade-off between hu-
man thermal comfort and building energy consumption, and it is
necessary to strike a balance between achieving a high comfort
level and reducing energy consumption through improving occu-
pant behavior.

The main contributions of this study are generally summarized
into two aspects. Firstly, the paper proposed a data mining
approach to identify the influences of occupant behavior on
building energy consumption with empirical data. This study ad-
dresses the inadequacies of simulation tools in quantifying the
energy use attributable to building occupants. As various factors
influence building energy consumption simultaneously, it is diffi-
cult to identify the individual effects of occupant behavior. Since
determining the parameters in behavior models often requires
intensive measurements, it is time and financially consuming to
describe each occupant and develop complicated behavioral model
as inputs due to users' behavior diversity and complexity. Besides,
the energy consumption is largely a group phenomenon as it usu-
ally occurs in social systems. As a result of actions by joint group
members, it is impossible to determine each occupant's energy
consumption. Meanwhile, concerning technical cost and privacy
protection, data of occupant behavior is mainly collected by sub-
jective questionnaire based on individuals in this stage. How to
quantify the impact of occupant behavior on building energy con-
sumption with empirical data is still a challenge. Based on data
mining technique, this study proposed a method to extract group-
level behavior based on individual behaviors, and successfully
quantify the impact of occupant behavior on building cooling en-
ergy consumption by correlating the actual energy performance of
similar rooms with different group-level occupant behaviors. Data
mining, as an emerging powerful technology in the field of com-
puter science, has great potential to extract knowledge from
building-related data. It contributes to studying occupant behavior
and building energy consumption for improving building energy
performance. Therefore, data mining approach used in this study
can provide a new perspective in quantifying the impact of the
occupant behavior on building performance.

In addition, when it comes to industry such as building design
and code formulation, practical implications of this study cannot be
ignored. Findings of this study provide an in-depth understanding
of the correlation between occupant behavior and cooling energy
consumption. A better understanding of occupant behavior in
building energy use can improve not only modeling accuracy of
occupant behavior in numerical simulation, but also design effi-
cient and targeted management strategies for behavioral change.
The occupants’ behaviors arise under complex context including
their thermal comfort, physiological phenomena, psychological
state, and interaction with others. It may be unrealistic to develop
accurate occupant models unless an in-depth understanding of
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occupants’ behavior is achieved. In particular, the derived typical
energy-related behaviors for males and females can provide refer-
ence for building designers. Occupant behavior can be simplified
into several typical behaviors. Further verification studies will be
conducted by integrating these typical energy-related behaviors
into energy simulation tools, which may contribute to narrowing
the performance gap between predicted and actual energy con-
sumption. Besides, this study is conducive to designing effective
behavioral change strategies for energy conservation, since the
typical energy-related behaviors could be targeted for energy
consumption reduction.

4. Conclusions

In order to extract typical energy-related behaviors influencing
cooling energy consumption, this study analyzed the effects of
different behaviors. Based on empirical data mining, significant
differences are found in cooling energy use between genders.
Generally, males consume 1.2—1.5 times more cooling energy than
females. Occupant behavior causes almost 2—3 times differences in
cooling energy consumption within the same gender. Through the
comprehensive analysis of various energy-related behaviors for
males and females, main findings from this study are summarized
as following:

1) Regardless of gender, behaviors such as the daily average hours
of air conditioning utilization, using fans instead of turning on
air conditioner, and the ratio of occupancy in room are typical
behaviors influencing cooling energy consumption. According
to DNA's framework and TPB theory, these behaviors are mainly
triggered by environment, habit and event. Among the three
triggers, habit is found as a vital influencing one based on data
analysis. Yet, the behaviors, such as closing the curtain when
feeling hot, closing the doors and windows before turning on air
conditioner and turning off air conditioner when leaving room
have negligible influence on cooling energy consumption;

2) The comparative study between gender indicate that behaviors,
like the frequency of utilization of air conditioner, and open
doors & windows for ventilation instead of turning on air
conditioner are typical behaviors influencing cooling energy
consumption for females. However, behaviors including thermal
preferences and the temperature set points of air conditioner
have more noticeable influence on cooling energy consumption
for males than females. Although the typical energy-related
behaviors of females and males differ to some extent, the fac-
tors affecting these behaviors are both greatly triggered by
environment and habit.

There are some similarities and discrepancies in typical energy-
related behaviors for males and females. There is a need to consider
gender differences in building energy design and behavioral
improvement strategies. Findings in this study could help improve
modeling accuracy of occupant behavior in numerical simulation.
Besides, it helps prioritize efforts at improvement of occupant
behavior in order to reduce building energy consumption in oper-
ation stage. Moreover, this study identified individual effects of
occupant behavior on cooling energy consumption by controlling
other influencing factors. Furthermore, it further investigated the
influence of occupant behavior on cooling energy consumption for
men and women. This study fills the research gap that the influence
of only one or two particular behaviors on building energy con-
sumption was investigated by previous simulation studies. The
originality of this work is to conduct comprehensive analysis of
different energy-related behavior effects on cooling energy con-
sumption, and to extract typical energy-related behaviors influ-
encing cooling energy consumption under different gender with
data mining approach.

Particularly, the diversity of occupant behavior was ignored in
previous studies. In contrast, this study provides an approach to
extract features of group behavior based on individuals. The fea-
tures have five indicators (Mix, Min, Mean, Mode, and Median), and
more indicators need to be found in future study. Further studies
should investigate in depth occupant behaviors at a group level.
Besides, the energy-related typical behaviors are mainly triggered
by environment and habit. Relevant theories and models of
behavior such as Self-efficacy, Theory of planned behavior, Theory
of reasoned action, etc. should be considered to further study
typical energy-related behaviors comprehensively and systemati-
cally. Understanding of what typical energy-related behaviors are
and how they change could help researchers improve modeling of
occupant behavior and design management strategies.

Acknowledgements

The study was supported by National Natural Science Founda-
tion of China (Grant No. 71772125) and Shenzhen Government
Basic Research Foundation for Free exploration (Grant No.
JCYJ20170818141151733). Special thanks to Prof. C. M. Tam for his
provision of language help in this research.

Appendix A. Measurement Scales in Questionnaire Survey

Please put “+/” in the blank for each item according to your own
attitudes. Following is listed the connotation of each code:

Code Items Always Often Occasionally Rarely Never
B1 Closing the curtains when feeling hot
B2 Turning on air conditioner as long as entering rooms
B3 Closing doors and windows before turning on air conditioner
B4 Opening doors and windows for ventilation instead of turning
on air conditioner
B5 Using fans instead of turning on air conditioner Always Often Occasionally Rarely Never
B6  Adjusting clothing to adapt to room temperature
B7 Switching off the air conditioner regularly when sleeping
B8 Turning off air conditioner when leaving room
B9 The daily average frequency of utilization of air conditioner 5 times 4 times 3 times 2 times 1 time
B10 Ratio of occupancy in room 90% <B10<80% 60%<B10<80% 40%<B10<60% 20%<B10<40% B10<20%

B11 Temperature set points of air conditioning

B12 Thermal preferences

B13 The daily average hours of air conditioner utilization in
summer

Room No.

26°C<B11<28°C 24°C<B11<26°C 22°C<B11<24°C 22°C<B11<20°C 17°C<B11<20°C
26°C<B12<28°C 24°C<B12<26°C 22°C<B12<24°C 22°C<B12<20°C 17°C<B12<20°C
24h<B13<20h

15h<B13<20h 10h<B13<15h 5h<B13<10h B13<5h
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